Role of data in informing policy, improving practices and achieving sustainability goals

Trevor Donnellan

Teagasc

29th PACIOLI-workshop Montegrotto Terme, Italy, October 6th – 9th 2024

The Sustainability Challenge in Agriculture

- Three pillars of agricultural sustainability:
 - 1. Economic: Profitability, market resilience, long-term viability COMPETITIVENESS
 - 2. Environmental: Soil health, biodiversity, water, climate
 - 3. Social: Rural vitality, farmer well-being, food security
- Key challenges:
 - Balancing productivity with environmental protection
 - Adapting to climate change
 - Maintaining farm incomes
- EU policy context:
 - Common Agricultural Policy (CAP) reform, European Green Deal, Farm to Fork Strategy etc.
- Global policy context:
 - Paris Agreement (limiting global warming to 1.5°C),
 - UN Sustainable Development Goals

So how can FSDN contribute to this process?

1. Supporting Common Agricultural Policy (CAP) Reforms:

- Economic Data: More targeted subsidies and direct payments, enhancing financial support for farms
- Agri-environmental Schemes: Guide the development of eco-schemes for biodiversity, emissions reduction and land conservation

2. European Green Deal & Farm to Fork Strategy:

- Measuring Environmental Impact: Tracking emissions, water use and biodiversity
- Sustainable Practices: Monitor development of organic farming

3. Rural Development Policy:

- Social Sustainability: Addressing rural depopulation and ensuring vibrant communities
- Innovation & Diversification: Supporting diversification particularly in areas where farm incomes are low

So how can FSDN contribute to this process?

4. Progress on Sustainable Development Goals (SDGs):

• Tracking SDGs: Supports EU commitments to SDGs

5. Balancing Trade-offs:

• Integrated Decision-Making: Balancing economic viability, environmental protection, and social well-being in policy choices

Accountability

6. Accountability & Transparency:

- **Policy Evaluation:** Monitoring success of policies in improving farm income, biodiversity and rural job creation
- Public Expectations: Better align policies with growing public demand for sustainable practices

Ability to Monitor Success Stories in Ag.

Are things improving?

- a) Increased Adoption of Precision Agriculture Techniques
 - Impact: better **resource use efficiency** (e.g., reduced fertilizer and pesticide use)

- Impact: profitability of organic farms vs. conventional farms
- c) Improvements in **Nutrient Use Efficiency**
 - Impact: improvements in NUE leading to reduced nutrient runoff & improved water quality

Ability to Monitor Areas of Stagnation in Ag.

Are things getting worse?

- Impact: indicate which agricultural sectors are making progress and which are lagging
- b) Trend in Farmland Biodiversity
 - Impact: Show decline/improvement in biodiversity indicator

- c) Ageing Farm Population and Succession Challenges
 - Impact: show demographic shifts in the farming population over time

Ability to Monitor Adoption of Sustainable Practices in Ag.

How are things getting better?

- a) Effectiveness of Policy Incentives
 - correlation between adoption rates and CAP eco-scheme participation

- education level: adoption rates across different farmer education levels
- advisory support: the impact of farm advisory system participation on practice adoption
- c) Relevance of Farm Characteristics
 - show the relationship between farm size and adoption rates
 - detect regional pattern of adoption rates

Ability to Monitor the Impact of Adoption of Sustainable Practices

Can we demonstrating the benefits of doing things better?

- a) Improved Economic Performance
 - profitability: comparing farm income for tech adopters vs. non-adopters
 - resilience: **income stability/volatility** resulting from extreme weather

GHG emissions: Calculate emission reductions attributable to specific practices

- farmer well-being: work-life balance and job satisfaction
- rural vitality: relationship between practice adoption and broader rural development indicators

Specific EU Policy Goals

a) Common Agricultural Policy (CAP) 2023-2027

• specific objectives related to environment, climate, and rural development

b) European Green Deal and Farm to Fork Strategy

- Key targets for 2030:
 - 50% reduction in **pesticide** use
 - 20% reduction in fertilizer use
 - 25% of agricultural land under organic farming
 - 10% of agricultural area under high-diversity landscape features

c) EU Biodiversity Strategy for 2030

- Relevant targets for agriculture:
 - Reverse the decline of **pollinators**
 - Reduce the overall use of chemical pesticides by 50% and high-risk pesticides by 50%

d) EU Climate Law and Member States Climate Plans

- agricultural sector's role in achieving climate neutrality by 2050
- Member State commitments for reducing agricultural emissions

Measuring Progress Towards EU Policy Goals (examples)

Linking FSDN Indicators to Policy Targets

a) Pesticide Use Reduction

- Metric: expenditure on plant protection products, area treated
- Analysis: Calculate pesticide use intensity and changes over time

b) Fertilizer Use Efficiency

- Metric: Fertiliser expenditure, crop yields, soil nutrient balances
- Analysis: Calculate **Nutrient Use Efficiency (NUE)** trends across different farm types

c) Organic Farming Expansion

- FSDN indicators: Organic land use data
- Analysis: Track organic conversion rates and economic performance of organic vs. conventional farms

d) Climate Action in Agriculture

- FSDN indicators: Livestock units, manure management practices
- Analysis: Estimate GHG emissions at farm level using IPCC methodologies

Measuring Progress Towards EU Policy Goals

- Data Visualisation
- Interactive Element: Policy Target Dashboard
 - An interactive dashboard that allows exploration of progress towards different policy targets
 - "Slicers" for time period, region and farm type

Case Study: Irish Agriculture

Tracking Sustainability Indicators for Irish Agriculture

- a) Environmental Sustainability
 - GHG and Ammonia emissions from Irish agriculture
 - with focus on methane from livestock
 - Water quality proxy indicators (Nitrogen use efficiency)
 - **Biodiversity** metrics (e.g., habitat quantity/ quality)
- b) Social Sustainability
 - Age structure of Irish farmers and succession plans
 - Off-farm employment rates

8. Case Study: Irish Agriculture

Tracking Sustainable Practice Adoption in Ireland

- a) Nutrient Management
 - Uptake of use of low emission fertilisers
 - Impact on GHG and ammonia emissions
- b) Low-Emission Slurry Spreading
 - Adoption rates of low-emission slurry spreading (LESS) technologies
 - Impact on ammonia emissions and nutrient use efficiency
- c) Organic Farming
 - Current status and growth trends in organic production
 - Comparison of organic farm with conventional farm performance

Conclusions and Future Directions

- FSDN transition makes sense:
 - FSDN data crucial for evidence-based policymaking
 - Data-driven approaches enable targeted interventions
- Future research opportunities involving FSDN:
 - Integrating FSDN with other data sources (e.g., Earth observation data)
 - Developing more robust social sustainability indicators
- Role for Stakeholders:
 - Policymakers: Invest in data infrastructure and analysis capabilities
 - Farmers: Engage with data collection efforts and use insights for decision-making
 - Researchers: Develop innovative methods to extract insights from complex datasets

